Rutgers University: Algebra Written Qualifying Exam

January 2015: Problem 4 Solution

Exercise. Recall that the group $G L_{2}(\mathbb{R})$ acts on \mathbb{R}^{2} by the usual matrix-vector multiplication $A \cdot v=A v$, where $A \in G L_{2}(\mathbb{R})$ and v is a column vector in \mathbb{R}^{2}.
(a) Determine the number of orbits for this action, and describe each orbit

Solution.

Suppose a group G acts on set X. For $x \in X$, the orbit of x is

$$
\operatorname{orb}(x)=\{g x: g \in G\} \subseteq X
$$

So, the number of orbits $=$ number of x 's s.t. $\{g x: g \in G\}$ is different
Look at $\vec{v}=\overrightarrow{0}$:

$$
\operatorname{orb}(\overrightarrow{0})=\left\{A \cdot \overrightarrow{0}: A \in G L_{2}(\mathbb{R})\right\}=\{0\}
$$

So this is one orbit.
Look at $\vec{v} \neq \overrightarrow{0}$:

$$
\operatorname{orb}(\vec{v})=\left\{A \vec{v}: A \in G L_{2}(\mathbb{R})\right\}
$$

If $\vec{v} \neq \overrightarrow{0}, \exists \vec{u} \neq \overrightarrow{0}$ s.t. $\{\vec{v}, \vec{w}\}$ forms a basis of \mathbb{R}^{2}
$\vec{v} \in \operatorname{orb}(\vec{v})$ since $I \vec{v}=\vec{v}$

$$
\begin{gathered}
v \in \operatorname{orb}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \text { since }\left[\begin{array}{ll}
v_{1} & u_{1} \\
v_{2} & u_{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\vec{v} \\
\Longrightarrow \operatorname{orb}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left\{\vec{v} \in \mathbb{R}^{2} \backslash\{(0,0)\}\right\}
\end{gathered}
$$

Also, for $\vec{w} \in \mathbb{R}^{2} \backslash\{(0,0)\}, \vec{w}=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$ where $w_{1}, w_{2} \in \mathbb{R}$ and not both 0
If $w_{1} \neq 0$ and $w_{2}=0$ then $\left[\begin{array}{ll}v_{1} / w_{1} & u_{1} \\ v_{2} / w_{1} & u_{2}\end{array}\right]\left[\begin{array}{c}w_{1} \\ 0\end{array}\right]=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\vec{v}$
If $w_{1}=0$ and $w_{2} \neq 0$ then $\left[\begin{array}{ll}u_{1} & v_{1} / w_{2} \\ u_{2} & v_{2} / w_{2}\end{array}\right]\left[\begin{array}{c}0 \\ w_{2}\end{array}\right]=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\vec{v}$
If $w_{1} \neq 0$ and $w_{2} \neq 0$ and $v_{1} \neq 0$ and $v_{2} \neq 0$ then $\left[\begin{array}{cc}v_{1} / w_{1} & 0 \\ 0 & v_{2} / w_{2}\end{array}\right]\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\vec{v}$
If $w_{1} \neq 0$ and $w_{2} \neq 0$ AND EITHER $v_{1}=0$ and $v_{2} \neq 0$ OR $v_{1} \neq 0$ and $v_{2}=0$ then

$$
\left[\begin{array}{ll}
\frac{v_{1}}{2 w_{1}} & \frac{v_{1}}{2 w_{2}} \\
\frac{v_{2}}{2 w_{1}} & \frac{v_{2}}{2 w_{2}}
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\vec{v}
$$

So $\vec{v} \in \operatorname{orb}(\vec{w})$ for all $\vec{w} \neq \overrightarrow{0}$, but $\vec{v} \neq \overrightarrow{0}$ was arbitrary
$\Longrightarrow \forall \vec{w} \neq \overrightarrow{0}, \operatorname{orb}(\vec{w})=\mathbb{R} \backslash\{(0,0)\}$
There are two orbits: $\quad \operatorname{orb}(\overrightarrow{0})=\{\overrightarrow{0})\} \quad$ and $\quad \operatorname{orb}(\vec{w})=\mathbb{R} \backslash\{(0,0)\}$ for $\vec{w} \neq \overrightarrow{0}$
(b) Find the pointwise stabilizer of the set $\left\{(x, y) \in \mathbb{R}^{2} \mid y=x, x \neq 0\right\}$

Solution.

The stabilizer of x is

$$
\operatorname{stab}(x)=\{g \in G: g x=x\}
$$

For $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G L_{2}(\mathbb{R})$,

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
x
\end{array}\right]=\left[\begin{array}{l}
a x+b x \\
c x+d x
\end{array}\right]=\left[\begin{array}{l}
(a+b) x \\
(c+d) x
\end{array}\right]
$$

So for $\left[\begin{array}{l}x \\ x\end{array}\right]$ where $x \neq 0$,

$$
\begin{aligned}
\operatorname{stab}\left(\left[\begin{array}{l}
x \\
x
\end{array}\right]\right) & =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L_{2}(\mathbb{R}):\left[\begin{array}{l}
(a+b) x \\
(c+d) x
\end{array}\right]=\left[\begin{array}{l}
x \\
x
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L_{2}(\mathbb{R}): \begin{array}{l}
a+b=1 \\
c+d=1
\end{array}\right\} \\
& =\left\{\text { invertible matrices }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: \begin{array}{l}
a+b=1 \\
c+d=1
\end{array}\right\}
\end{aligned}
$$

