Rutgers University: Algebra Written Qualifying Exam January 2015: Problem 4 Solution

Exercise. Recall that the group $GL_2(\mathbb{R})$ acts on \mathbb{R}^2 by the usual matrix-vector multiplication $A \cdot v = Av$, where $A \in GL_2(\mathbb{R})$ and v is a column vector in \mathbb{R}^2 .

(a) Determine the number of orbits for this action, and describe each orbit

Solution. Suppose a group G acts on set X. For $x \in X$, the **orbit** of x is $orb(x) = \{qx : q \in G\} \subset X$ So, the number of orbits = number of x's s.t. $\{qx : q \in G\}$ is different Look at $\vec{v} = 0$: $orb(\vec{0}) = \{A \cdot \vec{0} : A \in GL_2(\mathbb{R})\} = \{0\}$ So this is one orbit. Look at $\vec{v} \neq \vec{0}$: $orb(\vec{v}) = \{A\vec{v} : A \in GL_2(\mathbb{R})\}$ If $\vec{v} \neq \vec{0}$, $\exists \vec{u} \neq \vec{0}$ s.t. $\{\vec{v}, \vec{w}\}$ forms a basis of \mathbb{R}^2 $\vec{v} \in orb(\vec{v})$ since $I\vec{v} = \vec{v}$ $v \in orb\left(\begin{vmatrix} 1\\ 0 \end{vmatrix} \right)$ since $\begin{vmatrix} v_1 & u_1\\ v_2 & u_2 \end{vmatrix} \begin{vmatrix} 1\\ 0 \end{vmatrix} = \begin{vmatrix} v_1\\ v_2 \end{vmatrix} = \vec{v}$ $\implies orb\left(\begin{vmatrix} 1\\0 \end{vmatrix} \right) = \left\{ \vec{v} \in \mathbb{R}^2 \setminus \{(0,0)\} \right\}$ Also, for $\vec{w} \in \mathbb{R}^2 \setminus \{(0,0)\}, \ \vec{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ where $w_1, w_2 \in \mathbb{R}$ and not both 0 If $w_1 \neq 0$ and $w_2 = 0$ then $\begin{bmatrix} v_1/w_1 & u_1 \\ v_2/w_1 & u_2 \end{bmatrix} \begin{bmatrix} w_1 \\ 0 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \vec{v}$ If $w_1 = 0$ and $w_2 \neq 0$ then $\begin{bmatrix} u_1 & v_1/w_2 \\ u_2 & v_2/w_2 \end{bmatrix} \begin{bmatrix} 0 \\ w_2 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \vec{v}$ If $w_1 \neq 0$ and $w_2 \neq 0$ and $v_1 \neq 0$ and $v_2 \neq 0$ then $\begin{bmatrix} v_1/w_1 & 0 \\ 0 & v_2/w_2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \vec{v}$ If $w_1 \neq 0$ and $w_2 \neq 0$ AND EITHER $v_1 = 0$ and $v_2 \neq 0$ OR $v_1 \neq 0$ and $v_2 = 0$ then $\begin{bmatrix} \frac{v_1}{2w_1} & \frac{v_1}{2w_2} \\ \frac{v_2}{2w_1} & \frac{v_2}{2w_2} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \vec{v}$ So $\vec{v} \in orb(\vec{w})$ for all $\vec{w} \neq \vec{0}$, but $\vec{v} \neq \vec{0}$ was arbitrary $\implies \forall \vec{w} \neq \vec{0}, orb(\vec{w}) = \mathbb{R} \setminus \{(0,0)\}$ There are two orbits: $orb(\vec{0}) = \{\vec{0}\}\$ $orb(\vec{w}) = \mathbb{R} \setminus \{(0,0)\} \text{ for } \vec{w} \neq \vec{0}$ and

(b) Find the pointwise stabilizer of the set $\{(x, y) \in \mathbb{R}^2 | y = x, x \neq 0\}$

Solution.
The <u>stabilizer</u> of x is
$stab(x) = \{g \in G : gx = x\}$
For $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \in GL_2(\mathbb{R}),$
$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \begin{vmatrix} x \\ x \end{vmatrix} = \begin{vmatrix} ax + bx \\ cx + dx \end{vmatrix} = \begin{vmatrix} (a+b)x \\ (c+d)x \end{vmatrix}$
So for $\begin{bmatrix} x \\ x \end{bmatrix}$ where $x \neq 0$,
$\left(\begin{bmatrix} n \end{bmatrix} \right) \left(\begin{bmatrix} n & b \end{bmatrix} = \begin{bmatrix} (n + b)n \end{bmatrix} \begin{bmatrix} n \end{bmatrix} \right)$
$stab\left(\begin{vmatrix} x\\x \end{vmatrix}\right) = \left\{\begin{vmatrix} a & b\\c & d\end{vmatrix} \in GL_2(\mathbb{R}) : \begin{vmatrix} (a+b)x\\(c+d)x \end{vmatrix} = \begin{vmatrix} x\\x \end{vmatrix}\right\}$
$= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL_2(\mathbb{R}) : \begin{array}{c} a+b=1 \\ c+d=1 \end{array} \right\}$
$= \left\{ \begin{bmatrix} c & d \end{bmatrix} \in GL_2(\mathbb{K}) : c+d = 1 \right\}$
$= \left\{ \text{invertible matrices} \begin{bmatrix} a & b \\ c & d \end{bmatrix} : \begin{array}{c} a+b=1 \\ c+d=1 \end{array} \right\}$
$\begin{bmatrix} - \\ \end{bmatrix}^{\text{invertible matrices}} \begin{bmatrix} c & d \end{bmatrix} \cdot c + d = 1 \end{bmatrix}$